Poulton Lancelyn Primary School

How we teach calculations: Calculation Policy for Mathematics

April 2018

About our Calculation Policy

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school so that they become fluent mathematicians. Please note that early learning in number and calculation in Reception follows the "Development Matters" EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

Choosing a calculation method:

Children need to be taught and encouraged to use the following processes in deciding what approach they will take to a calculation, to ensure they select the most appropriate method for the numbers involved:

Year 1 Addition

EYFS to Year 1	$2+5=$ Count out each set then find the total

$2+5=$	$2+5$	$2+5$
+ 000	Leading to	$5+8$
		$4+13$
	$5+$	$11+7$
	$5+2$ (without counters)	
Count on from first number (Cover first number or display as numeral)	Recognise the biggest number in the calculation and count on from it (using objects for smaller number if necessary)	Recognise the biggest number in the calculation and count on from it mentally or using number line

$6+8$ becomes
$8+2+4$
Partitioning the smaller number and
use the tens number to bridge
calculation
$5+17$ becomes
$17+3+2$

Children should
-Have access to a wide range of counting equipment, everyday objects, number tracks and number lines, and be shown numbers in different contexts.
-Read and write the addition (+) and equals (=) signs within number sentences.
-Interpret addition number sentences and solve missing box problems, using concrete objects and number line addition to solve them

$$
8+3=\quad 15+4=\square \quad 5+3+1=\square
$$

Key Skills

- Read and write numbers to 100 in numerals, incl. 1-20 in words
- Recall bonds of numbers to 10 and of all numbers to 20, and
addition facts within 20
- Count to and across 100
- Count in multiples of $1,2,5$ and 10
- Solve simple 1-step problems involving addition, using objects, number lines and pictorial representations.

Key vocabulary:

add, more,
plus, and, make, altogether, total,
equal to, equals,
double, most, count
on,
number line

Year 2 Addition
 Steps to success

Developing mental fluency with addition and place value involving 2-digit numbers, then establish more formal methods.

Year 2 Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: -a two-digit number and ones -a two-digit number and tens -two two-digit numbers -adding three one-digit numbers	$6+18$ By counting on from the largest number $30+46$ By counting on in tens	$6+58$ By partitioning the smaller number through the multiple of 10 $22+50$ By counting in groups of ten and one from largest number	$\text { TU + TU within } 100$ $37+44$ or $\begin{array}{r} 40+30=70 \\ 7+4=11 \\ 70+11=81 \end{array}$ Or $44+40-3=81$ Recall of facts to 20 and by recall of adding multiples of 10 will support this thinking	Addition of three single digits - look for bonds you know and doubles $\begin{aligned} & 6+9+3 \\ & 6+3=9 \end{aligned}$ Double $9=18$	

Key Skills

- Add a 2-digit number and ones (e.g. $27+6$)
- Add a 2-digit number and tens (e.g. $23+40$)
- Add pairs of 2-digit numbers (e.g. $35+47$)
- Add three single-digit numbers (e.g. $5+9+7$)
- Show that adding can be done in any order (the commutative law).
- Recall bonds of any number to 20 and bonds of tens to $100(30+70$ etc.)
- Count in steps of 2,3 and 5 and count in tens from any number.
- Understand the place value of 2-digit numbers (tens and ones)
- Compare and order numbers to 100 using < > and = signs.
- Read and write numbers to at least 100 in numerals and words.
- Solve problems with addition, using concrete objects, pictorial representations, involving numbers, quantities and measures, and applying mental and written methods.

Key vocabulary:

 add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line
Year 3 Addition

Steps to success

Year 4 Addition

Steps to success

Year 4

Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
Using mental strategy where
appropriate
$1460+499$
$1460+500-1=1959$
$2560+3570$
$6000+130=7130$
$2524+3176$
$5600+100$ (number bond) $=5700$

Addition of three digit + 3-digit and four digit + four digit
Move from expanded addition to the compact column method, adding units first, and 'carrying' numbers underneath the calculation. Also include money and measures contexts.
576
369
$\frac{945}{11}$

$$
\begin{array}{r}
7268 \\
5179 \\
\hline 12447 \\
\hline
\end{array}
$$

Addition of numbers to 2 decimal places

4. 45
$\begin{array}{r}3.55 \\ \hline\end{array}$
$\frac{8.00}{11}$
57.89
$\begin{array}{r}46.67 \\ \hline 104.56 \\ \hline 121\end{array}$ 104.56

Key Skills

- Select most appropriate method: mental, jottings or written and explain why.
- Recognise the place value of each digit in a four-digit number.
- Round any number to the nearest 10,100 or 1000.
- Estimate and use inverse operations to check answers.
- Solve 2-step problems in context, deciding which operations and methods to use and why.
- Find 1000 more or less than a given number.
- Continue to practise a wide range of mental addition strategies, ie. number bonds, add the nearest multiple of 10, 100, 1000 and adjust, use near doubles, partitioning and recombining.
- Add numbers with up to 4 digits using the formal written method of column addition
- Solve 2-step problems in contexts, deciding which operations and methods to use and why.
- Estimate and use inverse operations to check answers to a calculation.

Year 5 Addition

The decimal point should be aligned in the same way as the other place value columns, and must be in the same column in the answer.

Steps to success

Pupils should be able to add more than two values, carefully aligning place value columns.
Empty decimal places can be filled with zero to show the place value in each column.
Say " 6 tenths add 7 tenths" to reinforce place value.

Key Skills

- Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies ie. add the nearest multiple of $10,100,100$ and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds.
- Use rounding to check answers and accuracy.
- Solve multi-step problems in contexts, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Round any number up to 1000000 to the nearest $10,100,1000,10000$ and 100000.
- Add numbers with more than 4 digits using formal written method of columnar addition

Year 6 Addition

Steps to success

Adding several numbers with different numbers of decimal places (including money and measures): Tenths, hundredths and thousandths should be correctly aligned, with the decimal point lined up vertically including in the answer row.

Zeros could be added into any empty decimal places, to show there is no value to add.

Key Skills

- Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies.
- Solve multi-step problems in context, deciding which operations and methods to use and why.
- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit.
- Round any whole number to a required degree of accuracy.
- Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.

Year 1 Subtraction steps to success

Key Skills

- Given a number, say one more or one less.
- Count to and over 100, forward and back, from any number.
- Represent and use subtraction facts to 20 and within 20.
- Subtract with one-digit and two-digit numbers to 20, including zero.
- Solve one-step problems that involve addition and subtraction, using concrete objects (ie bead string, objects, cubes) and pictures, and missing number problems.
- Read and write numbers from 0 to 20 in numerals and words.

Key vocabulary:

equal to, take, take away, less, minus subtract, leaves, distance between,
how many more, how many fewer/less
than, most, least, count back, how many
left, how much less is?

Year 2 Subtraction Steps to success

 | partition the 16 into | $18 \quad 19$ |
| :--- | :--- | :--- |

$2 / 4 / 10$ or $12 / 4$ and subtract

When numbers are close together, count on from the smallest number through the multiple of ten or count back from the largest to the smallest through the multiple of ten.

Key Skills

- Recognise the place value of each digit in a two-digit number.
- Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100.
- Subtract using concrete objects, pictorial representations, 100 squares and mentally, including: a two-digit number and ones, a two-digit number and tens, and two two-digit numbers.
- Show that subtraction of one number from another cannot be done in any order
- Recognise and use inverse relationship between addition and subtraction, using this to check calculations and missing number problems.
- Solve simple addition and subtraction problems including measures, using concrete objects, pictorial

Key vocabulary: difference, count on, representation, and also applying their increasing strategy, partition, knowledge of mental and written methods.

- Read and write numbers to at least 100 in numerals and in words.

Year 3 Subtraction Steps to success

Expanded column subtraction

$$
89-35=54
$$

$$
\begin{array}{r}
80+9 \\
-\quad 30+5 \\
\hline 50+4
\end{array}
$$

Introduce this method with examples where no exchanging is required.
When learning to 'exchange', explore 'partitioning in different ways' so that pupils understandthatwhen youexchange, theVALUE is the same ie $72=70+2=60+12$ $=50+22$ etc. Emphasise that the value hasn't changed, we havejust partitioned it in a different way.
£5.67-£2.20
$£ 5.67-£ 2.00=£ 3.67$
$£ 3.67-20 p=£ 3.47$

Difference

(see also subtraction up to three digits)

$$
103-87=16
$$

When numbers are close together, count on from the smallest number through the multiple of ten or count back from the largest to the smallest through the multiple of ten.

$716-693=23$

Key Skills

- Subtract mentally a: 3-digit number and ones, 3-digit number and tens, 3 -digit number and hundreds
- Estimate answers and use inverse operations to check
- Solve problems, including missing number problems.
- Find 10 or 100 more or less than a given number.
- Recognise the place value of each digit in a 3-digit number
- Counting up differences as a mental strategy when numbers are close together or near multiples of 10 (see examples above)
- Read and write numbers up to 1000 in numerals and words
- Practise mental subtraction strategies, such as subtracting near multiples of 10 and adjusting (e.g. subtracting 19 or21), and select most appropriate methods

Key vocabulary: exchange, decrease,
hundreds, value, digit

Year 4 Subtraction

| Year 4 | Subtraction up to four digits |
| :--- | :--- | :--- |
| Add and subtract numbers
 with up to 4 digits using the
 formal written methods of
 columnar addition and
 subtraction where
 appropriate | $\mathbf{£ 5 0} \mathbf{- \mathbf { f 2 8 . 2 5 } = £ 2 1 . 7 5}$ |

Steps to success

As introduced in Y 3 , but moving towards more complex numbers and values. Use place value counters to reinforce 'exchanging'

Key Skills

- Subtract by counting on where numbers are close together or they are near to multiples of 10, 100 etc.
- Children select the most appropriate and efficient methods for given subtraction calculations.
- Estimate and use inverse operations to check answers.
- Solve addition and subtraction 2-step problems, choosing which operations and methods to use and why.
- Solve simple measure and money problems involving fractions and decimals to two decimal places.
- Find 1000 more or less than a given number.
- Count backwards through zero, including negative numbers.
- Recognise place value of each digit in a 4-digit number Round any number to the nearest 10,100 or 1000
- Solve number and practical problems that involve the above, with increasingly large positive numbers.

Year 5 Subtraction Steps to success

Year 5
Add and subtract numbers mentally
with increasingly large numbers eg 5-
digit - 4-digit multiple of 10

Key Skills

- Subtract numbers mentally with increasingly large numbers.
- Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy .
- Solve addition and subtraction multi-step problems in context, deciding which operations and methods enths, hundredths, to use and why.
decimal point,
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Count forwards or backwards in steps of powers of 10 for any given number up to 1 million.
- Interpret negative numbers in context, counting forwards and backwards with positive and negative integers through 0.
- Round any number up to 1 million to the nearest 10,100, 1000, 10 000 and 100000.

Year 6 Subtraction Steps to success

Key Skills

- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit
- Round any whole number to a required degree of accuracy
- Use negative numbers in context, and calculate intervals across zero.
- Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate.

Year 1 Multiplication Steps to success

Year 1
Solve one-step problems
involving multiplication and
division, by calculating the
answer using concrete objects,
pictorial representations and
arrays with the support of the
teacher.

Count in multiples of twos, fives and tens from any number Present practical problem solving activities involving counting equal sets or groups, as above.

Key Skills

Count in multiples of 2,5 and 10 starting from any number.
Solve one-step problems involving multiplication, by calculating the answer using concrete objects, pictorial
Key vocabulary:
groups of, lots of, representations and arrays with the support of the teacher.
Make connections between arrays, number patterns, and counting in twos, fives and tens.
Begin to understand doubling using concrete objects and pictorial representations.
times, array,
altogether,
multiply, count

Year 2 Multiplication Steps to success

Key Skills

- Count in steps of 2,3 and 5 from zero, and in 10 s from any number.
- Recall and use multiplication facts from the 2,5 and 10 multiplication tables, including recognising odds and evens.
- Write and calculate number statements using the x and $=$ signs.

Key vocabulary:

- Show that multiplication can be done in any order (commutative).
- Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, mental methods, and multiplication facts.
- Pupils use a variety of language to discuss and describe multiplication.

Year 3 Multiplication Steps to success

Year 3	Recall and use multiplication and division facts mathematical statements for the 3, 4 and 8 for multiplication and division using the multiplication tables that they know, including for tables two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
Multiply single digits by $20,30,40,50$ and 80	

$4 \times 6=24$
Use arrays and number lines to count in multiples

Using partitioning to multiply
$57 \times 2=114$
$50 \times 2 \quad 7 \times 2$
$100+14=114$

Key Skills

- Recall and use multiplication facts for the 2, 3, 4, 5, 8 and 10 multiplication tables, and multiply multiples of 10.
- Write and calculate number statements using the multiplication tables they know, including 2-digit x single-digit, drawing upon mental methods, and progressing to reliable written methods.
$48 \times 3=144$
(Partitioning using the grid method)
Eg: $23 \times 8=184$

X	20	3		
8	160	24		160
---:				
+24				
184				

To do this, children must be able to:

- Partition numbers into tens and ones
- Multiply multiples of ten by a single digit (e.g. 20×4) using their knowledge of multiplication facts and place value
- Recall and work out multiplication facts in the 2, 3, 4, 5, 8 and 10 times tables.
- Work out multiplication facts not known by repeated addition or other taught mental strategies (e.g. by commutative law, working out near multiples and adjusting, using doubling etc.)
- Solve multiplication problems, including missing number problems.
- Develop mental strategies using commutativity (e.g. $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
- Solve simple problems in contexts, deciding which operations and methods to use.
- Develop efficient mental methods to solve a range of problems e.g using commutativity ($4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=$ 240) and for missing number problems ? $\times 5=20, \quad 3 \times ?=18, \quad ? \times 1=32$

Key vocabulary:
partition, grid method, multiple,
product, tens,
units, value

Year 4 Multiplication

Steps to success

Year 4

Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers

Multiply and divide two-digit and three-digit numbers by a one-digit number using formal written layout

Recall multiplication and division facts for multiplication tables up to 12×12 (facts for $6,7,9,11,12$ are new)	Mental Multiplying by 10 and 100			
	Th	H	T	U
			2	4
Multiply single digits by	2	4	0	0
	Eg. 24×100			
	Part 267 200 60 7 400	$\begin{aligned} & \text { ning } \\ & =400 \\ & =120 \\ & =14 \\ & 20+1 \end{aligned}$	=534	

| 67×9 |
| :--- | :--- |
| \times 60 7
 9 540 63 |

437×6

\times	400	30	7
6	2400	180	42

$2400+180+42=2622$

Partitioning grid multiplication leading to formal compact methods
$67 \times 9=$
$67 \quad 540+63=603$
$\begin{array}{r}69 \\ \hline 603\end{array}$

Children should be able to:

Approximate before they calculate, and make this a regular part of their calculating, going back to the approximation to check the reasonableness of their answer.e.g:
346×9 is approximately $350 \times 10=3500 \|$
Record an approximation to check the final answer against.

Key Skills

- Count in multiples of 6,7,9,25 and 1000
- Recall multiplication facts for all multiplication tables up to 12×12.
- Recognise place value of digits in up to 4-digit numbers
- Use place value, known facts and derived facts to multiply mentally, e.g. multiply by $1,10,100$, by 0 , or to multiply 3 numbers.
- Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30 \times 7+9 \times 7$.
- Solve problems with increasingly complex multiplication in a range of contexts.
- Count in multiples of $6,7,9,25$ and 1000
- Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)

Year 5 Multiplication Steps to success
 Mental calculation

Year 5

Multiply numbers up to 4 digits by a one- or two-digit number using a
formal written method, including long multiplication for two-digit numbers

Multiply and divide numbers mentally drawing upon known facts
multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000

Partitioning
407×4
$400 \times 4=1600$
$0 \times 4=0$
$7 \times 4=28$
$1600+28=1628$
Rounding and adjusting
£3.99 $\times 6$
£4 $\times \mathbf{6}=£ \mathbf{~} \mathbf{2 4}$
$\mathbf{£ 2 4 . 0 0} \mathbf{-} \mathbf{£ 0 . 0 6} \mathbf{=} \mathbf{£ 2 3 . 9 4}$
28×19
$28 \times 10 \times 2=560$
$560-28=532$

Short multiplication for multiplying by a single digit					
				H TU	
\times	300	20	7	\times	2
4	1200	80	28		4
				1308	
					2
Introduce by comparing				grid method	

calculation to a short multiplication method, to see how the steps are related, but notice how there are less steps involved in the column method.
Children need to be taught to approximate first, e.g. for $\mathbf{7 2 \times 3 8}$, they will use rounding: $\mathbf{7 2 \times 3 8}$ is approximately $70 \times 40=\mathbf{2 8 0 0}$, and use the approximation to check the reasonableness of their answer against.

Key Skills

Identify multiples and factors, using knowledge of multiplication tables to 12×12.
Solve problems where larger numbers are decomposed into their factors
Multiply and divide integers and decimals by 10, 100 and 1000
Key vocabulary:

Recognise and use square and cube numbers and their notation
Solve problems involving combinations of operations, choosing and using calculations and methods appropriately. Video clips: Moving from grid method to a compact method (youtube)

Introduce long multiplication for multiplying by 2 digits

	10	8
10	100	80
3	30	24

Use the grid to introduce long multiplication as the relationship can be seen in the answer in each row

18×3 on the 1st row

$(8 \times 3=24$, carrying the 2 for twenty, then ' 1 ' $\times 3$).
18×10 on the 2 nd row. Put a zero in units first, then say $8 x$ 1 , and 1×1

Year 6 Multiplication Steps to success

Key Skills

- Recall multiplication facts for all times tables up to 12×12 (as Y 4 and Y 5).
- Multiply multi-digit numbers, up to 4 -digit $\times 2$-digit using long multiplication.
tenths,
- Perform mental calculations with mixed operations and large numbers.
hundredths,
decimal
- Solve multi-step problems in a range of contexts, choosing appropriate combinations of operations and methods.
- Estimate answers using round and approximation and determine levels of accuracy.
- Round any integer to a required degree of accuracy.

Video clips:
Moving from grid method to a compact method (youtube)
Reinforcing rapid times table recall: (youtube)
Demonstration of long multiplication (SLEP)

Year 1 Division

Steps to success

Year 1

Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial
representations and arrays with the support of the teacher.

Group and share small quantities
Using objects, diagrams and pictorial representations to solve problems involving both grouping and sharing.

Pupils should
Be able to count in multiples of $2 s, 5 s$ and 10 s
Find half of a group of objects by sharing into 2 equal groups

Understand the difference between ",grouping" objects (How many groups of 2 can you make?) and ,,sharing" (Share these sweets between 2 people)

Grouping

Sharing

12 shared between 3 is 4

Example division problem in a

 familiar context:There are 6 pupils on this table and there are 18 pieces of fruit to share between us. If we share them equally, how many will we each get?

Can they work it out and give a division statement... ?
" 18 shared between 6 people
gives you 3 each."

Key vocabulary:

share, share equally, one each, two each..., group, groups of, lots of, array

Year 2 Division Steps to success

Key Skills

- Count in steps of 2,3, and 5 from 0
- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs.
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.

Key vocabulary:

divide, divided by, divided into, division, grouping, number line, left, left over

- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Year 3 Division Steps to success

Division as grouping	Halving by partitioning
Grouping on a number line: $3 \times 10 \quad 3 \times 4$ 30 Children continue to work out unknown division facts bygrouping on a number line from zero. They are also now taught the concept of remainders, as in the example. This should be introduced practically and with arrays, as well as being translatedtoa numberline. Children should work towardscalculating somebasicdivisionfactswithremainders mentally for the $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10s, ready for 'carrying' remaindersacrosswithintheshortdivisionmethod.	

Key Skills

- Recall and use multiplication and division facts for the 2,3,4,5,8 and 10 multiplication tables (through doubling, connect the 2,4 and 8s).
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including

Key vocabulary: inverse, short division, 'carry', remainder, multiple for two-digit numbers times one-digit numbers, using mental and progressing formal written methods.

- Solve problems, in contexts, and including missing number problems, involving multiplication and division.
- Pupils develop efficient mental methods, for example, using multiplication and division facts
(e.g. using $3 \times 2=6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60$, so $60 \div 3=20$ and $20=60 \div 3$).
- Pupils develop reliable written methods for division, starting with calculations of 2-digit numbers by 1-digit numbers and progressing to the formal written method of short division.

$\mathbb{Y e a r}$ division Steps to success

Year 4	Division facts for
Use place value,	
known and	
derived facts to	tables up to $12 \times$ multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers
Use facts for numbers up to 10 times the divisor	
Eg $75 \div 9$	
This is between	
Divide two-digit	
and three-digit	
numbers by a	
one-digit number	
using formal	
written layout	$72 \div 9=8$ and
$81 \div 9=9$	
So 8 remainder 3	

Short division: Limit numbers to NO remainders in the answer OR carried (each digit must be a multiple of the divisor

Remind children of correct place value, that 96 is equal

to 90 and 6, but in short division, pose:

- How many 3 's in 9 ? $=3$, and record it above the 9 tens.
- How many 3 's in 6 ? $=2$, and record it above the 6 units.
Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the layout of short division by comparing it to an array.

Key Skills

Short division: Limit numbers to NO remainders in the final answer, but with remainders occurring within the calculation

Once children demonstrate a full
understanding of remainders, and
also the short division method taught, they can be taught how to use the method when remainders occur within the calculation (e.g. 96+4), and be taught to 'carry' the remainder onto the next digit. If needed, children should use the number line to work out individual division facts that occur which they are not yet able to recall mentally.

Pupils move onto dividing numbers with up to 3-digits by a single digit, however problems and calculations provided should not result in a final answer with remainder at this stage.

When the answer for the first column is zero (1 $\div 5$, as in example), children could initially write a zero above to acknowledge its place, and must always 'carry' the number (1) over to the next digit as a remainder

Recall multiplication and division facts for all numbers up to 12×12.
Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100
and 1.
Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a one-digit number
Pupils practise mental methods and extend this to three-digit numbers to derive facts, for example
$200 \times 3=600$ so $600 \div 3=200$
Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as three cakes shared equally between 10 children.

Year 5 Division Steps to success

Key Skills

- Recall multiplication and division facts for all numbers up to 12×12 (as in y4).
- Multiply and divide numbers mentally, drawing upon known facts.
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two number.
- Solve problems involving multiplication and division where larger numbers are decomposed into their factors.
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.
- Use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers.
- Work out whether a number up to 100 is prime, and recall prime numbers to 19.
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Use multiplication and division as inverses.
- Interpret non-integer answers to division by expressing results in different ways according to

Key vocabulary: quotient, prime number, prime
factors,
composite
number (nonprime)

Year 6
Divide numbers up to 4
digits by a two-digit
whole number using
the formal written
method of long
division, and interpret
remainders as whole
number remainders,
fractions, or by
rounding, as
appropriate for the
context
Divide numbers up to 4
digits by a two-digit
number using the
formal written method
of short division where
appropriate,
interpreting
remainders according
to the context

Use known facts

Know 378 is a multiple of 3 because 300/60 and 18 are all multiples of 3

Know 385 is a multiple of 7 because 350 and 35 are multiples of 7

Use tests of divisibility Multiple of 3, digits in the number add to 3,6 or 9

Multiple of 4, tens and ones in the number are a multiple of 4

Multiple of 6 , the number is even and digits in the number add to 3,6 or 9

Multiple of 9, digits in the number add to 9

Steps to success

Short division, for dividing by a single digit

Short division with remainders:
Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, deci-mals, whole number remainders, or rounded numbers. Real where life problem solving contexts need to be the starting point, pupils have to consider the most appropriate way to express the remainder.
Calculating a decimal remainder: In this example, rather than expressing the remainder as $\underline{\mathbf{1} 1}$, a decimal point is added after the units because there is still a remainder, and the one remainder is carried onto zeros after the decimal point (to show there was no decimal value in the original number). Keep dividing to an appropriate degree of accuracy for the problem being solved.

Introduce long division by chunking for dividing by 2 digits

Find out 'How many 36 s are in 972?' by subtracting 'chunks' of 36 , until zero is reached (or untilthere is a remainder).
Teach pupils to write a 'bank' first at the side that will help them decide what chunks to use, e.g.:

$$
\text { Bank } 1 x=36
$$

$$
10 x=360
$$

$$
100 x=3600
$$

Introduce the method in a simple way by limiting the choice of chunks to 'Can we use 10 lots? Can use 100 lots?' As children become confident with the process, encourage more efficient chunks to get to the answer more quickly (e.g. $20 \mathrm{x}, 5 \mathrm{x}$), and expand on their 'bank'.

Key Skills

- Recall and use multiplication and division facts for all numbers to 12×12 for more complex calculations
- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as vocabulary: whole number remainders, fractions, or by rounding, as appropriate for the context. Use short division where appropriate.
- Perform mental calculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- Use estimation to check answers to calculations and determine accuracy, in the context of a problem.
- Use written division methods in cases where the answer has up to two decimal places.
- Solve problems which require answers to be rounded to specified degrees of accuracy.

